| 
    (Event+Time).Variant Operators
    2.3
    
   Operators for Timed Discrete Event Systems in Dioids 
   | 
 
Class for polynomials in the semiring T[[g]]. More...
#include <polyTg.h>
  
 Public Member Functions | |
| polyTg () | |
| initialised with Epsilon element  | |
| polyTg (bool TopNotE) | |
| specific initialization : polyTg(true) set to Top, polyTg(false) set to E  | |
| polyTg (const Tg &m) | |
| initialised with one monomial m  | |
| polyTg (const std::vector< Tg > &v) | |
| void | canon () | 
| set to the canonical form  | |
| bool | isCanon () const | 
| Check if a polyTg is in canonical form.  | |
| bool | isE () const | 
| check if is equal to E()=g0.d0  | |
| polyTg | operator+ (const polyTg &p) const | 
| Sum of polynomials in T[[g]].  | |
| polyTg | oplus (const polyTg &p) const | 
| Sum of polynomials in T[[g]].  | |
| polyTg | oplusCD (const polyTg &p) const | 
| Sum of polynomials in T[[g]] via a Core Decomposition (see J.Trunk Thesis)  | |
| polyTg | operator+ (const Tg &m) const | 
| Sum of a polynomial in T[[g]] with a monomial in T[[g]].  | |
| void | add (const Tg &m) | 
| The current polynomial pcur is modified as pcur=pcur+m.  | |
| polyTg | operator+= (const Tg &m) | 
| Lies on polyTg::add(const Tg & m) method.  | |
| polyTg | operator* (const polyTg &p) const | 
| Product of polynomials in T[[g]].  | |
| polyTg | otimes (const polyTg &p) const | 
| Product of polynomials in T[[g]].  | |
| polyTg | operator* (const Tg &m) const | 
| Product of one polynomial by one monomial in T[[g]].  | |
| polyTg | otimesCD (const polyTg &p) const | 
| Product of polynomials in T[[g]] via a Core Decomposition (see j.Trunk thesis)  | |
| polyTg | inf (const polyTg &p) const | 
| Infimum of two polynomials in T[[g]].  | |
| polyTg | infCD (const polyTg &p) const | 
| Infimum of two polynomials in T[[g]] via a Core Decomposition (see J.Trunk thesis)  | |
| seriesTg | star () const | 
| Kleene star of a polynomial in T[[g]], the result is a series in T[[g]].  | |
| polyTg | lfrac (const polyTg &p) const | 
| Computation of the left-multiplication residuation:  | |
| polyTg | lfracCD (const polyTg &p) const | 
| Computation of the left-multiplication residuation via a Core Decomposition.  | |
| polyTg | lfrac (const Tg &m) const | 
| Computation of the left-multiplication residuation:  | |
| polyTg | rfrac (const polyTg &p) const | 
| Computation of the right-multiplication residuation:  | |
| polyTg | rfracCD (const polyTg &p) const | 
| Computation of the right-multiplication residuation via a Core Decomposition.  | |
| polyTg | rfrac (const Tg &m) const | 
| Computation of the right-multiplication residuation:  | |
| bool | operator== (const polyTg &) const | 
| Check equality.  | |
| bool | operator!= (const polyTg &) const | 
| Check difference.  | |
| bool | operator<= (const polyTg &) const | 
| Check order on polynomials in E[[d]].  | |
| bool | operator>= (const polyTg &) const | 
| Check order on polynomials in E[[d]].  | |
| poly | toPoly () const | 
| The zero-slice polynomial in MinMax[[g,d]].  | |
| Tg | getFirstDif (const polyTg &p) const | 
| polyTg | transientStar (int Tmax) const | 
| Do not use it. Use polyTg::star(). Only for DEBUGGING purpose.  | |
| void | getMaxGain (unsigned int &vee, unsigned int &wedge) const | 
| Gives the maximal gain.  | |
| void | getLcmGain (unsigned int &vee, unsigned int &wedge) const | 
| Gives th Least Common multiple of gains.  | |
| std::pair< unsigned int, unsigned int > | getPeriodicity () const | 
| Returns the periodicity as a pair.  | |
| std::vector< Tg > | getTerms () const | 
| return the monomials as a collection of Tg terms  | |
| void | removeTerm (unsigned idx) | 
| remove term number i in the polynomial  | |
| Tg | operator[] (unsigned idx) const | 
| Returns a copy of monomial in position idx in the polynomial.  | |
| unsigned int | size () const | 
| Returns the size = the number of monomials. For Epsilon and Top, size=0.  | |
| std::string | toString () const | 
| returns a string that gives the description of the current polynomial. Is depending on the canonical form of dDd terms  | |
| std::string | toStringAsDeltaVar () const | 
| returns a description of the current polynomial (the gain must be 1)  | |
| matrix< poly > | getCore (unsigned ratio=1) const | 
| returns the Core matrix<poly> (in MinMax[[g,d]]) of the current polynomial  | |
| matrix< poly > | getCoreMax (unsigned ratio=1) const | 
| returns the maximal Core matrix<poly> (in MinMax[[g,d]]) of the current polynomial  | |
| void | toPov (graphicPR::PovRay &pov, graphicPR::PovRay::Color c) | 
| used in the creation of POV-Ray script for a polyTg object  | |
  Public Member Functions inherited from etvo::ISterm | |
| ISterm (bool isEpsilon=false) | |
| default constructor : an epsilon term  | |
| ISterm (int epsNTop) | |
| constructor to specify the type of ISterm  | |
| bool | isEpsilon () const | 
| bool | isTop () const | 
| bool | isExtreme () const | 
| void | setEpsilon () | 
| void | setTop () | 
| bool | operator== (const ISterm &) const | 
Static Public Member Functions | |
| static polyTg | Epsilon () | 
| Epsilon element.  | |
| static polyTg | Top () | 
| Top element.  | |
| static polyTg | E () | 
| neutral element  | |
| static polyTg | otimes (const Tg &m, const polyTg &p) | 
| static polyTg | toPolyTg (const poly &p) | 
| Creates a polynomial in T[[g]] from a polynomial in MinMax[[g,d]].  | |
| static polyTg | toCausal (const polyTg &p) | 
| returns the projection of p into the set of causal series in T[[g]] (not reliable yet)  | |
| static polyTg | coreToPolyTg (const matrix< poly > &core) | 
| computes the recomposition of a polyTg polynomial from a Core Decomposition core.  | |
| static etvo::matrix< poly > | getMatN (unsigned size) | 
Additional Inherited Members | |
  Protected Attributes inherited from etvo::ISterm | |
| char | _epsNTop | 
| _epsNTop = -1 epsilon 0 not extrem (normal) +1 Top  | |
Class for polynomials in the semiring T[[g]].
epsilon and top element exist.
| etvo::polyTg::polyTg | ( | const std::vector< Tg > & | v | ) | 
When the current polynomial is different from p, gives the first different monomial Otherwise, if both polynomials are equals, returns Tg::E()=g0.d0