(Event+Time).Variant Operators
2.3
Operators for Timed Discrete Event Systems in Dioids
|
Class for polynomials in the semiring T[[g]]. More...
#include <polyTg.h>
Public Member Functions | |
polyTg () | |
initialised with Epsilon element | |
polyTg (bool TopNotE) | |
specific initialization : polyTg(true) set to Top, polyTg(false) set to E | |
polyTg (const Tg &m) | |
initialised with one monomial m | |
polyTg (const std::vector< Tg > &v) | |
void | canon () |
set to the canonical form | |
bool | isCanon () const |
Check if a polyTg is in canonical form. | |
bool | isE () const |
check if is equal to E()=g0.d0 | |
polyTg | operator+ (const polyTg &p) const |
Sum of polynomials in T[[g]]. | |
polyTg | oplus (const polyTg &p) const |
Sum of polynomials in T[[g]]. | |
polyTg | oplusCD (const polyTg &p) const |
Sum of polynomials in T[[g]] via a Core Decomposition (see J.Trunk Thesis) | |
polyTg | operator+ (const Tg &m) const |
Sum of a polynomial in T[[g]] with a monomial in T[[g]]. | |
void | add (const Tg &m) |
The current polynomial pcur is modified as pcur=pcur+m. | |
polyTg | operator+= (const Tg &m) |
Lies on polyTg::add(const Tg & m) method. | |
polyTg | operator* (const polyTg &p) const |
Product of polynomials in T[[g]]. | |
polyTg | otimes (const polyTg &p) const |
Product of polynomials in T[[g]]. | |
polyTg | operator* (const Tg &m) const |
Product of one polynomial by one monomial in T[[g]]. | |
polyTg | otimesCD (const polyTg &p) const |
Product of polynomials in T[[g]] via a Core Decomposition (see j.Trunk thesis) | |
polyTg | inf (const polyTg &p) const |
Infimum of two polynomials in T[[g]]. | |
polyTg | infCD (const polyTg &p) const |
Infimum of two polynomials in T[[g]] via a Core Decomposition (see J.Trunk thesis) | |
seriesTg | star () const |
Kleene star of a polynomial in T[[g]], the result is a series in T[[g]]. | |
polyTg | lfrac (const polyTg &p) const |
Computation of the left-multiplication residuation: | |
polyTg | lfracCD (const polyTg &p) const |
Computation of the left-multiplication residuation via a Core Decomposition. | |
polyTg | lfrac (const Tg &m) const |
Computation of the left-multiplication residuation: | |
polyTg | rfrac (const polyTg &p) const |
Computation of the right-multiplication residuation: | |
polyTg | rfracCD (const polyTg &p) const |
Computation of the right-multiplication residuation via a Core Decomposition. | |
polyTg | rfrac (const Tg &m) const |
Computation of the right-multiplication residuation: | |
bool | operator== (const polyTg &) const |
Check equality. | |
bool | operator!= (const polyTg &) const |
Check difference. | |
bool | operator<= (const polyTg &) const |
Check order on polynomials in E[[d]]. | |
bool | operator>= (const polyTg &) const |
Check order on polynomials in E[[d]]. | |
poly | toPoly () const |
The zero-slice polynomial in MinMax[[g,d]]. | |
Tg | getFirstDif (const polyTg &p) const |
polyTg | transientStar (int Tmax) const |
Do not use it. Use polyTg::star(). Only for DEBUGGING purpose. | |
void | getMaxGain (unsigned int &vee, unsigned int &wedge) const |
Gives the maximal gain. | |
void | getLcmGain (unsigned int &vee, unsigned int &wedge) const |
Gives th Least Common multiple of gains. | |
std::pair< unsigned int, unsigned int > | getPeriodicity () const |
Returns the periodicity as a pair. | |
std::vector< Tg > | getTerms () const |
return the monomials as a collection of Tg terms | |
void | removeTerm (unsigned idx) |
remove term number i in the polynomial | |
Tg | operator[] (unsigned idx) const |
Returns a copy of monomial in position idx in the polynomial. | |
unsigned int | size () const |
Returns the size = the number of monomials. For Epsilon and Top, size=0. | |
std::string | toString () const |
returns a string that gives the description of the current polynomial. Is depending on the canonical form of dDd terms | |
std::string | toStringAsDeltaVar () const |
returns a description of the current polynomial (the gain must be 1) | |
matrix< poly > | getCore (unsigned ratio=1) const |
returns the Core matrix<poly> (in MinMax[[g,d]]) of the current polynomial | |
matrix< poly > | getCoreMax (unsigned ratio=1) const |
returns the maximal Core matrix<poly> (in MinMax[[g,d]]) of the current polynomial | |
void | toPov (graphicPR::PovRay &pov, graphicPR::PovRay::Color c) |
used in the creation of POV-Ray script for a polyTg object | |
![]() | |
ISterm (bool isEpsilon=false) | |
default constructor : an epsilon term | |
ISterm (int epsNTop) | |
constructor to specify the type of ISterm | |
bool | isEpsilon () const |
bool | isTop () const |
bool | isExtreme () const |
void | setEpsilon () |
void | setTop () |
bool | operator== (const ISterm &) const |
Static Public Member Functions | |
static polyTg | Epsilon () |
Epsilon element. | |
static polyTg | Top () |
Top element. | |
static polyTg | E () |
neutral element | |
static polyTg | otimes (const Tg &m, const polyTg &p) |
static polyTg | toPolyTg (const poly &p) |
Creates a polynomial in T[[g]] from a polynomial in MinMax[[g,d]]. | |
static polyTg | toCausal (const polyTg &p) |
returns the projection of p into the set of causal series in T[[g]] (not reliable yet) | |
static polyTg | coreToPolyTg (const matrix< poly > &core) |
computes the recomposition of a polyTg polynomial from a Core Decomposition core. | |
static etvo::matrix< poly > | getMatN (unsigned size) |
Additional Inherited Members | |
![]() | |
char | _epsNTop |
_epsNTop = -1 epsilon 0 not extrem (normal) +1 Top | |
Class for polynomials in the semiring T[[g]].
epsilon and top element exist.
etvo::polyTg::polyTg | ( | const std::vector< Tg > & | v | ) |
When the current polynomial is different from p, gives the first different monomial Otherwise, if both polynomials are equals, returns Tg::E()=g0.d0